References and Notes
<A NAME="RW06810ST-1A">1a </A>
Heldebrant D.
Jessop PG.
J.
Am. Chem. Soc.
2003,
125:
5600
<A NAME="RW06810ST-1B">1b </A>
Hesis L.
Gais HJ.
Tetrahedron Lett.
1995,
36:
3833
<A NAME="RW06810ST-1C">1c </A>
Haimov A.
Neumann R.
Chem. Commun.
2002,
876
<A NAME="RW06810ST-1D">1d </A>
Wang X.-C.
Quan Z.-J.
Zhang Z.
Tetrahedron
2007,
63:
8227
<A NAME="RW06810ST-2A">2a </A>
Chandrasekhar S.
Narsihmulu Ch.
Sultana SS.
Reddy NR.
Org. Lett.
2002,
4:
4399
<A NAME="RW06810ST-2B">2b </A>
Ackermann L.
Vicente R.
Org. Lett.
2009,
11:
4922
<A NAME="RW06810ST-2C">2c </A>
Zhou W.-J.
Wang K.-H.
Wang J.-X.
J.
Org. Chem.
2009,
74:
5599
<A NAME="RW06810ST-3A">3a </A>
Biginelli P.
Gazz. Chim. Ital.
1893,
23:
360
<A NAME="RW06810ST-3B">3b </A>
Kappe CO.
Tetrahedron
1993,
49:
6937
<A NAME="RW06810ST-3C">3c </A>
Kappe CO.
Acc. Chem. Res.
2000,
33:
879
<A NAME="RW06810ST-3D">3d </A>
Kappe CO.
Stadler A.
Org. React.
2004,
63:
1
<A NAME="RW06810ST-3E">3e </A>
Dallinger D.
Stadler A.
Kappe CO.
Pure
Appl. Chem.
2004,
76:
1017
<A NAME="RW06810ST-3F">3f </A>
Gong LZ.
Chen XH.
Xu XY.
Chem. Eur. J.
2007,
13:
8920
<A NAME="RW06810ST-3G">3g </A>
Kolosov MA.
Orlov VD.
Mol.
Diversity
2009,
13:
5
<A NAME="RW06810ST-3H">3h </A>
Quan Z.-J.
Zhang Z.
Da Y X.
Wang X.-C.
Chin. J. Org. Chem.
2009,
29:
876 ; in Chinese
<A NAME="RW06810ST-4A">4a </A>
Kappe CO.
Eur. J. Med. Chem.
2000,
35:
1043
<A NAME="RW06810ST-4B">4b </A>
Deres K.
Schroder CH.
Paessens A.
Goldmann S.
Hacker HJ.
Weber O.
Kraemer T.
Niewoehner U.
Pleiss U.
Stoltefuss J.
Graef E.
Koletzki D.
Masantschek RNA.
Reimann A.
Jaeger R.
Groß R.
Beckermann B.
Schlemmer K.-H.
Haebich D.
Rubsamen-Waigmann H.
Science
2003,
299:
893
<A NAME="RW06810ST-4C">4c </A>
Lengar A.
Kappe CO.
Org. Lett.
2004,
6:
771
<A NAME="RW06810ST-4D">4d </A>
Sing K.
Arora D.
Poremsky E.
Lowery J.
Moreland RS.
Eur.
J. Med. Chem.
2009,
44:
1997
<A NAME="RW06810ST-4E">4e </A>
Singh K.
Arora D.
Singh K.
Singh S.
Mini Rev. Med. Chem.
2009,
9:
95
<A NAME="RW06810ST-5A">5a </A>
Snider BB.
Shi Z.
J.
Org. Chem.
1993,
58:
3828
<A NAME="RW06810ST-5B">5b </A>
Patil AD.
Kumar NV.
Kokke WC.
Bean MF.
Freyer AJ.
DeBrosse C.
Mai S.
Truneh A.
Gaulkner DJ.
Carte B.
Breen AL.
Hertzberg RP.
Johnson RK.
Westly JW.
Potts BC.
J.
Org. Chem.
1995,
60:
1182
<A NAME="RW06810ST-5C">5c </A>
Aron ZD.
Overman LE.
Chem.
Commun.
2004,
253
<A NAME="RW06810ST-6">6 </A>
The
Merck Index, An Encyclopedia of Chemicals, Drugs and Biologicals
13th
ed.:
Merck;
Whitehouse Station:
2001.
<A NAME="RW06810ST-7A">7a </A>
Kappe CO.
Roschger P.
J.
Heterocycl. Chem.
1989,
26:
55
<A NAME="RW06810ST-7B">7b </A>
Gholap AR.
Toti KS.
Shirazi F.
Deshpande MV.
Srinivasan KV.
Tetrahedron
2008,
64:
10214
<A NAME="RW06810ST-8A">8a </A>
Watanabe M.
Koike H.
Ishiba T.
Okada T.
Seo S.
Hirai K.
Bioorg. Med.
Chem.
1997,
5:
437
<A NAME="RW06810ST-8B">8b </A>
Kim DC.
Lee YR.
Yang B.-S.
Shin KJ.
Kim DJ.
Chung
BY.
Yoo KH.
Eur. J. Med. Chem.
2003,
38:
525
<A NAME="RW06810ST-8C">8c </A>
Kasparec J.
Adams JL.
Sisko J.
Silva DJ.
Tetrahedron Lett.
2003,
44:
4567
<A NAME="RW06810ST-8D">8d </A>
Gayo LM.
Suto
MJ.
Tetrahedron
Lett.
1997,
38:
211
<A NAME="RW06810ST-8E">8e </A>
Matloobi M.
Kappe CO.
J. Comb. Chem.
2007,
9:
275
<A NAME="RW06810ST-8F">8f </A>
Obrecht D.
Abrecht C.
Grieder A.
Villalgordo JM.
Helv. Chim. Acta
1997,
80:
65
<A NAME="RW06810ST-8G">8g </A>
Vanden Eynde JJ.
Labuche N.
Van Haverbeke Y.
Tietze L.
ARKIVOC
2003,
(xv):
22
<A NAME="RW06810ST-9">9 </A>
Vanden Eynde JJ.
Audiart N.
Canonne V.
Michel S.
Van Haverbeke Y.
Kappe CO.
Heterocycles
1997,
45:
1967
<A NAME="RW06810ST-10">10 </A>
Yamamoto K.
Chen YG.
Buono FG.
Org.
Lett.
2005,
7:
4673
<A NAME="RW06810ST-11">11 </A>
Kang FA.
Kodah J.
Guan QY.
Li XB.
Murray
WV.
J. Org. Chem.
2005,
70:
1957
<A NAME="RW06810ST-12">12 </A>
Matsushima A,
Oda M,
Kawachi Y, and
Chika J. inventors; WO 03/006439 A1.
<A NAME="RW06810ST-13A">13a </A>
Rueter JK.
Nortey SO.
Baxter EW.
Leo GC.
Reitz AB.
Tetrahedron
Lett.
1998,
39:
975
<A NAME="RW06810ST-13B">13b </A>
Zhang MJ.
Moore JD.
Flynn DL.
Hanson PR.
Org.
Lett.
2004,
6:
2657
<A NAME="RW06810ST-13C">13c </A>
Cho C.-L.
Yun H.-S.
Park K.
J.
Org. Chem.
2003,
68:
3017
<A NAME="RW06810ST-13D">13d </A>
Choi JH.
Lee BC.
Lee HW.
Lee I.
J.
Org. Chem.
2002,
67:
1277
<A NAME="RW06810ST-13E">13e </A>
Gao C.-Y.
Yang
L.-M.
J. Org. Chem.
2008,
73:
1624
<A NAME="RW06810ST-14">14 </A>
Bříza T.
Král V.
Martásek P.
Kaplánek R.
J.
Fluorine Chem.
2008,
129:
235
<A NAME="RW06810ST-15">15 </A>
General Procedure
for the Preparation of
3
To a stirred mixture of compound 2 (1 mmol) and
p -toluenesulfonyl
chloride (1.5 mmol) in PEG-400 (2 g), K2 CO3 (1.5
mmol) was added at 0 ˚C. The reaction mixture was taken
slowly to r.t. and stirred for ca. 40 min. After complete conversion
(TLC monitoring), the crude reaction mixture was poured into H2 O
to induce precipitation. The solid was filtered and washed with
copious amounts H2 O, then recrystallized from EtOH to
give pure pyrimidin-2-yl sulfonates 3 as
white solid.
Selected Data for Compound
3a
Mp 106-108 ˚C. ¹ H
NMR (400 MHz, CDCl3 ): δ = 1.06
(t, 3 H, J = 7.2
Hz), 2.45 (s, 3 H), 2.57 (s, 3 H) 4.20 (q, 2 H, J = 7.2
Hz), 7.32-8.03 (m, 9 H). ¹³ C
NMR (100 MHz, CDCl3 ): δ = 13.6,
21.7, 22.5, 62.2, 123.8, 128.5, 128.5, 129.3, 129.4, 130.8, 133.8,
136.3, 145.5, 158.7, 166.7, 167.2, 169.6. ESI-MS: m/z = 413 [M + H+ ].
Table 3 Coupling
of Pyrimidin-2-yl Sulfonates 3 with Phenol
<TD VALIGN="TOP" COLSPAN="5">
</TD>
<TD VALIGN="TOP">
Entry
</TD><TD VALIGN="TOP">
Sulfonate 3
</TD><TD VALIGN="TOP">
R
</TD><TD VALIGN="TOP">
Product 7
</TD><TD VALIGN="TOP">
Yield (%)c
</TD>
<TD VALIGN="TOP">
1a
</TD><TD VALIGN="TOP">
3a
</TD><TD VALIGN="TOP">
H
</TD><TD VALIGN="TOP">
7a
</TD><TD VALIGN="TOP">
88
</TD>
<TD VALIGN="TOP">
2b
</TD><TD VALIGN="TOP">
3a
</TD><TD VALIGN="TOP">
H
</TD><TD VALIGN="TOP">
7a
</TD><TD VALIGN="TOP">
90
</TD>
<TD VALIGN="TOP">
3a
</TD><TD VALIGN="TOP">
3a
</TD><TD VALIGN="TOP">
Cl
</TD><TD VALIGN="TOP">
7b
</TD><TD VALIGN="TOP">
80
</TD>
<TD COLSPAN="20">
</TD></TR><TR><TD VALIGN="TOP" COLSPAN="5">
a Reaction
conditions A: 3 (1.0 mmol), phenol (1.5
mmol), K2 CO3 (1.5 mmol), PEG-400 (2.0 g),
r.t., 60 min.
b Reaction conditions B: 3 (1.0 mmol), phenol (1.5 mmol), NaOt -Bu (1.5 mmol), PEG-400 (2 g), r.t.,
90 min.
c Isolated yield.
</TD>
<A NAME="RW06810ST-16">16 </A>
General Procedure
for the Preparation of
4 and 5
To a stirred mixture of
compound 3 (1 mmol) in PEG-400 (2 g) at
r.t. were added nucleophiles (1.5 mmol) and K2 CO3 (1.5 mmol).
After the mixture was stirred at r.t. for 0.5-1 h (TLC monitoring),
it was poured into H2 O to induce precipitation. The solid
was filtered and washed with copious amounts water, then recrystallized
from EtOH and PE to give pure products 4 and 5 as white solid.
Selected
Data for Compounds 4a
Mp 118-119 ˚C. ¹ H
NMR (400 MHz, CDCl3 ): δ = 0.95
(t, 3 H, J = 7.2
Hz), 2.50 (s, 3 H), 3.76 (t, 4, J = 4.8
Hz), 3.93 (m, 3 H), 4.04 (q, 2 H, J = 7.2
Hz), 7.40-7.58 (m, 5 H). ¹³ C
NMR (100 MHz, CDCl3 ): δ = 13.5,
23.1, 44.1, 60.9, 66.9, 114.5, 128.1, 128.2, 129.5, 139.3, 160.2,
165.7, 167.0, 168.9. ESI-MS: m/z 328 ([M+H+ ]).
Selected Data for Compounds 5a
Mp
65-66 ˚C. ¹ H NMR (400 MHz,
CDCl3 ): δ = 1.04
(t, 3 H, J = 7.2
Hz), 2.39 (s, 3 H), 2.50 (s, 3 H), 4.14 (q, 2 H, J = 7.2 Hz),
7.21-7.53 (m, 9 H). ¹³ C NMR
(100 MHz, CDCl3 ): δ = 13.6,
21.3, 22.6, 61.7, 121.4, 125.9, 128.3, 128.4, 129.7, 130.1, 135.1,
137.4, 139.2, 163.5, 165.8, 168.1, 172.4. ESI-MS: m/z = 365 [M + H+ ].
<A NAME="RW06810ST-17">17 </A>
General Procedure
for the Preparation of 6
To a stirred mixture of compound 3 (1 mmol) in PEG-400 (2 g) at r.t. were
added nucleophiles (1.5 mmol) and NaOt -Bu (1.5
mmol). After the mixture was stirred at r.t. for 1.5 h (TLC monitoring),
the reaction mixture was treated with H2 O, and extracted
with EtOAc, the organiclayers were dried over Na2 SO4 .
The crude product was purified by flash chromatography (PE-EtOAc, 10:1)
to give pure products 6 as colorless oil.
Selected Data for Compound 6a
¹ H
NMR (400 MHz, CDCl3 ): δ = 0.92
(t, 3 H, J = 7.2
Hz), 1.34 (t, 3 H, J = 6.8
Hz), 2.47 (s, 3 H), 4.05 (m, 2 H), 4.40 (q, 2 H, J = 7.2
Hz), 7.30-7.56 (m, 5 H). ¹³ C
NMR (100 MHz, CDCl3 ): δ = 13.4,
14.2, 22.5, 61.3, 63.5, 119.5, 128.0, 128.1, 129.8, 137.7, 163.9,
166.2, 168.1, 168.4. ESI-MS: m/z = 287 [M + H+ ].